Today:

Spatial and temporal resolution Bring input device for next 3 classes

3:27 PM

Spatial resolution can be DEGRADED by

- Bad focus
- Rastering, pixelation
- Diffraction effects
- Low contrast
- Compression artifact (in jpegs)
- Motion blur

• Bad focus: is circle of confusion > pixel?

What is a decade? 10x; AKA order of magnitude
O(x)
Largest scale = whole frame, takes 3000 px.
Smallest resolvable scale = feature that takes
up 3 px or so.
3→30 One decade
$30 \rightarrow 300$ 2nd decade
300→3000 3rd decade.
We can resolve features that range across 3
decades of scales.
In flow, scales can be 3 minimum
For turbulence need 4 or 5 decades minimum
Same scale considerations as for CED:
If resolution is increased, is new information seen?
Is it important information?
In CFD, could have different physics; even large scale results could be wrong
In Flow Vis, missing small scales could lead to misinterpretation of physics
Minute paper: In your GW image how many
decades of Length scale was in your flow?
How many did your image canture?
Was your flow spatially resolved?
Examples from GW images: resolved vs not
resolved. What if there aren't two things close
together, how to estimate from an edge
gradient?
Human everesolution 74 to >500 Max, depending on how you count
Other considerations of shutter speed:
Short enough to 'freeze' flow= TIME RESOLVED
VS long enough to get desired particle tracks
or long enough to be TIME AVERAGED.
Calculate motion blur. If unacceptable, increase time resolution= shorter exposure
time
Increase shutter speed
Max is 1/10,000? 0.1 msec, 100 μsec? At best.
High speed camera 30,000 fps ~ 3 x 10-5 sec = 30 μsec
Freeze the flow with short light source (won't work for light emitting fluids, i.e. flames)
Strobe, camera flash ~ 10-5 or -6 sec = 1-10 µsec
Pulsed laser 3x10-9 sec = 3 nsec or less
Good resource for high speed photography. http://www.hiviz.com/index.html
If long shutter is needed, might be too much light, even at low ISO.
Try a
NDF = Neutral Density Filter. Neutral = all wavelengths equally. Gray. $\int \partial^{6} z \gamma^{2}$
NDF 1 = 1 /10 light transmission, 3 stops
NDF 2 = 1/100 etc. Log scale. 7 stops
http://en.wikipedia.org/wiki/File:Strickland_Falls_Shadows_Lifted.jpg
30 seconds. NDF 8x = 1/100,000,000 = 27 stops $\chi = \sqrt[3]{\mu_1 2}$
= 26.6
///II/Comments Section/II/Comments

Need a tripod for macros, or shutters > 1/30 sec Full size start at \$25. Highly recommended.

Several available for checkout.

Estimate motion blur *in pixels* to guide choice of shutter speed.

Example: Field of view = 10 cm Fluid moving at 0.5 m/s 10 Mpx sensor

Minute paper: what shutter speed will 'freeze' this flow?

Can tolerate maybe 5 px blur? 10 Mpx ~ 3750 X 2750 0.1 m / 3750 = 2.6 e-5 = 0.000026 m/px = 26 μ m/px 5 px = 1.3 e-4 m = 0.00013 = 0.13 mm estimated acceptable object displacement x time t = x/velocity 1.3e-4 m / (0.5 m/s) = 2.6e-4 seconds 2.6e-4 sec = 1/3750 Very short. Can your camera do this? 5/3750 = 0.0013 = 0.13% of image width

Do this analysis for each image. Motion blur is surprisingly common and annoying.