Monday, January 31, 2011 2:26 PM

Admin:

Today: Clouds, 1 of 3 lectures

CLOUDS

Learning Objectives:

- 1. Be able to identify cloud types
- 2. Describe air motion and atmospheric stability
- that govern the appearance of basic cloud
- types.
- 3. Interpret weather data with respect to likely

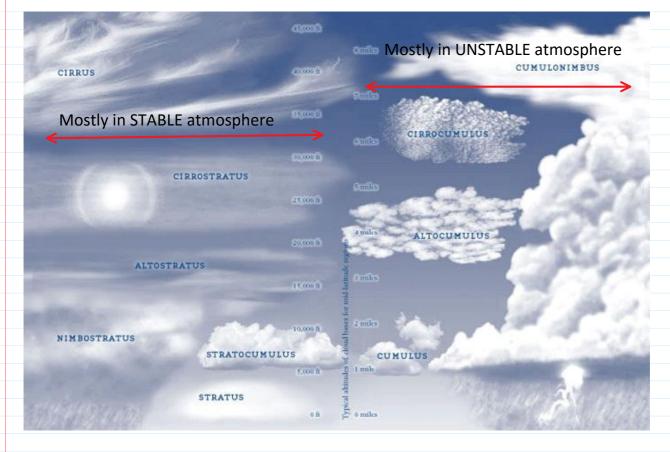
clouds, including Skew-T plots and wind souncings. many separate cloud names can you recall? No internet

- allowed!
- Cumulus Stratus Cumulonimbus Nimbostratus Altostratus
- Cirrus Lenticularis Mammatus
- Undulatus Roll cloud
- Best clouds physics book, easy read:
- Gavin Pretor-Pinney, The Cloudspotter's Guide Join the Cloud Appreciation Society
- (Perigee/Penguin, 2006).

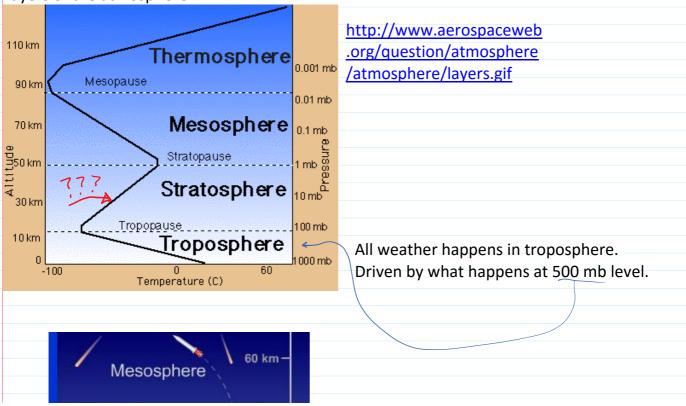
Next, (for free)

Thomas Carney et al., AC 00-57 Hazardous Mountain Winds and Their Visual Indicators (Federal Aviation Administration, 1997), http://rgl.faa.gov/Regulatory and Guidance Li brary/rgAdvisoryCircular.nsf/0/780437D88CBDA FD086256A94006FD5B8?OpenDocument.

Other cloud and atmospheric science books available for checkout; my office.


Office hours Monday 2-3, ECME 220

TONS of online info, most is OK.


Also, CloudSpotter phone app.

Following info partially adapted from Mike Baker,

local NOAA Weather Service forecaster.

Pretor-Pinney, Gavin. The Cloudspotter's Guide. Perigee/Penguin, 2006. Cloud types depend primarily on atmospheric stability. Need background to understand how.

Layers of the atmosphere:

60 km-	
Mesosphere 🔪	
X	
Stratopause	
A	
40 km - +	
Т	
I Stratosphere 30 km - U	2
ozone layer E	Oz + UVC -> O+Oz theat
	() + VVC - Oto that
	3
Tropopause 10 km -	Louis Ould on th
Troposphere	Lower O + Oz - 2 Oz
	http://www.windows2universe.or
	g/earth/Atmosphere/stratosphere
	<u>.html</u>
O ₃ absorbs sunlight, heats stratosph	ere
Warm over cold	
Less dense over more dense = STAB	LE. Hold that thought.
Back to SCALES; how big	
Back to SCALES, NOW DIg	
Llow his is this?	
How big is this?	
←	\longrightarrow
Do you estimate in metric or in En	glish units?
-	-
< Minute paper: In your head, 10 kn	n = X miles, = Y thousand feet.
Be approximate, 1 sig fig.	
http://www.wolframalpha.com/i	nput/?i=10+km+in+miles
http://www.wolframalpha.com/i	
	npag to 1 time in thiometers

Order of magnitude estimates are VERY USEFUL.				
Polar	Mid-Latitudes	Tropics		
	High (5000-13000 m)	High (6000-18000m)		
High (3000-8000m) Middle (2000-4000m) Low (surface-2000m)	Middle (2000-7000m) Low (surface-2000m)	Middle (2000-8000m) Low (surface-2000 m)		

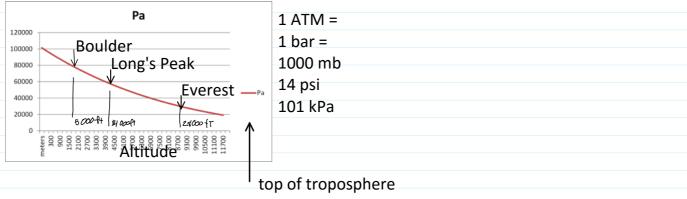
colder, denser shorter atm.

Sea level air pressure = uniform worldwide, except +/- 2% due to weather (high, low pressure systems)

Height of atm goes with seasons too; higher in summer with hot air.

Temperature change with altitude in troposphere:

Minute paper in groups: *Why* is it colder on top of a mountain than at the foot?


Start with pressure profile in atmospheric column: highest at surface, decreases going up.

Comes from hydrostatics; gravity balanced by pressure.

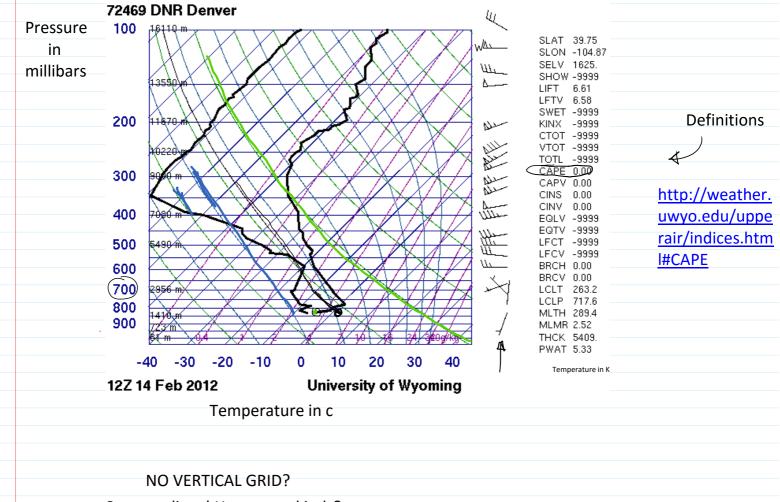
Piston/cylinder

Rising parcels expand, *do work* and therefore cool.

Vice versa is true too; descending parcels get compressed (work is done on them) and warm Pressure profile in the atmosphere http://www.engineeringtoolbox.com/airaltitude-pressure-d_462.html

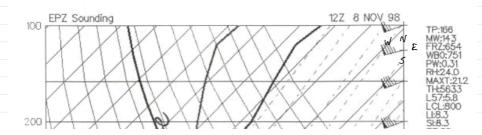
Actual temperature profile in the TROPOSPHERE Comes from *sounding data*; weather balloons

Modern radiosondes measure or calculate the following variables:

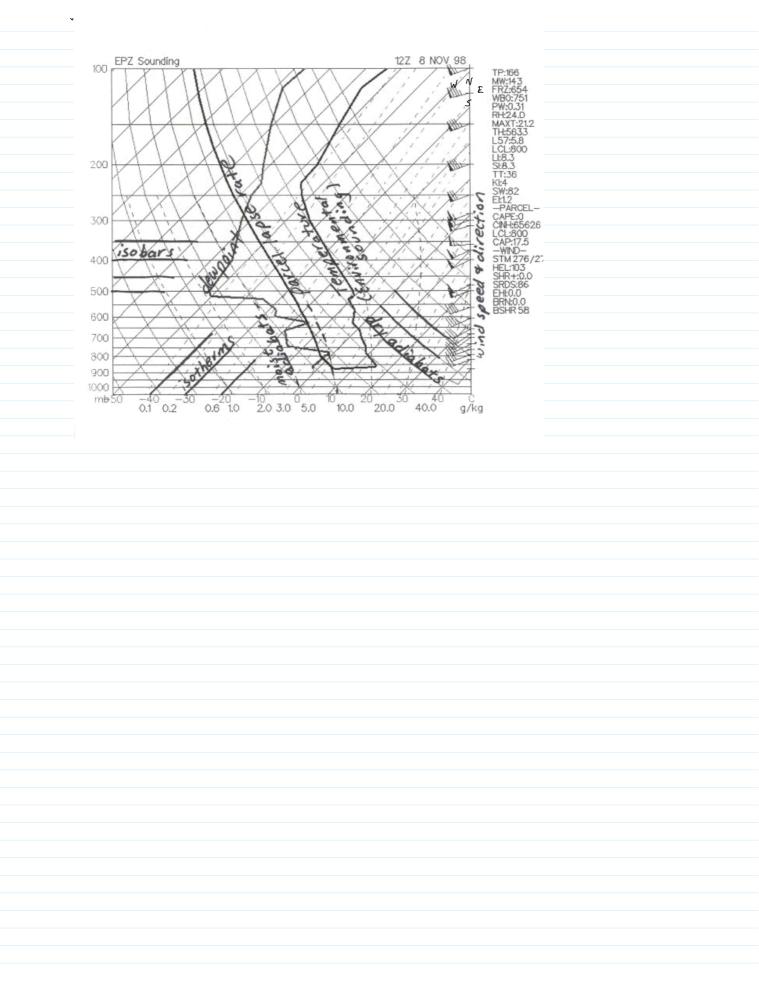

- Pressure
- <u>Altitude</u>

Þ

- Geographical position (Latitude/Longitude)
- Temperature
- <u>Relative humidity</u>
- Wind (both wind speed and wind direction)
- Cosmic ray readings at high altitude


Pasted from <<u>http://en.wikipedia.org/wiki/Radiosonde</u>>

Here's what it looks like: SKEW-T http://weather.uwyo.edu/upperair/sounding.html YOU will do this for the date of your image



So many lines! How many kinds?		
Horizontal blue	Constant pressure	
Angled blue	Constant temperature; isotherm. Angle SKEW T	
Angle/curve green	Dry adiabat. A dry parcel will follow this temperature line if cooled	
	adiabatically	
Angle/curve blue	Moist, saturated adiabatic lapse rate	
Purple	Lines of constant mixing ratio; absolute humidity for saturation.	
Heavy black	Right line is temperature profile. Left line is dew point	
Light black	Adiabat starting at the top of the boundary layer	

Basics: <u>http://www.theweatherprediction.com/thermo/skewt/</u> Skew T Mastery: <u>https://www.meted.ucar.edu/loginForm.php?</u> <u>urlPath=mesoprim/skewt#</u>

A

