Today
Last Team 1 images
Reports: UG MEs, need to make sure you refer to physics more, include at least web-level references. Use self-assessment as check sheet. Ask if you are unsure where to look for info.
Finish Resolution

How much resolution is needed?
Consider range of scales:
3000 px wide image, can see $1: 1000=3$ decades of scales
In flow, scales can be 3 minimum,
For turbulence need 4 or 5 decades minimum
Same scale considerations as for CFD:
If resolution is increased, is new information seen?
Is it important information?
In CFD, could have different physics
In Flow Vis, could lead to misinterpretation of physics

$$
\begin{aligned}
& \frac{3 p x}{1000}=X \text { DECADES } \\
& 1 \text { Decade } \\
& 3 \rightarrow 830 \\
& 30 \rightarrow 30 \text { decade }
\end{aligned}
$$

Minute paper: In your GW image, how many decades of length scale was in your flow?
How many did your image capture?
Was your flow spatially resolved?

Examples from GW images; resolved vs not
resolved. What if there aren't two things close together, how to estimate from an edge
gradient?

Human eye resolution, 74 to $>500 \mathrm{Mpx}$, depending on how you count.

Time resolution

Shutter nomenclature:
$2=1 / 2 \mathrm{sec}, 20=201 / 20$ th sec etc.
$2 "=2 \mathrm{sec}$
T = time = actuate open, actuate closed
$B=b u l b=o p e n ~ a s ~ l o n g ~ a s ~ a c t u a t e d . ~ R a r e ~ n o w . ~$

To change exposure, lighten image, overexpose compared to AE suggestion +++ Darken, underexpose compared to AE, -----

Other considerations of shutter speed:
Short enough to 'freeze' flow= TIME RESOLVED
VS long enough to get desired particle tracks
or long enough to be TIME AVERAGED.

If long shutter is needed, might be too much
light. Try a
NDF = Neutral Density Filter. Neutral = all \qquad
wavelengths equally. Gray.
NDF $1=1 / 10$ light transmission.
NDF $2=1 / 100$ etc. Log scale.
http://en.wikipedia.org/wiki/File:Strickland Falls
Shadows Lifted.jpg
30 seconds. NDF $8 x$

Need a tripod for macros, or shutters $>1 / 30$ sec

Full size start at $\$ 25$. Highly recommended.
Several available for checkout.
Estimate motion blur in pixels to guide choice of shutter speed.

Example:
Field of view $=10 \mathrm{~cm}$
Fluid moving at $0.5 \mathrm{~m} / \mathrm{s}$
10 Mpx sensor
Minute paper: what shutter speed will 'freeze' this flow?

Can tolerate maybe 5 px blur? 10 Mpx ~ 3750×2750 distance in object plane
$0.1 \mathrm{~m} / 3750=2.6 \mathrm{e}-5=0.000026 \mathrm{~m} / \mathrm{px}=26 \mu \mathrm{~m} / \mathrm{px}$
$5 \mathrm{px}=1.3 \mathrm{e}-4 \mathrm{~m}=0.00013=0.13 \mathrm{~mm}$ estimated acceptable object displacement x time $t=x /$ velocity
$1.3 \mathrm{e}-4 \mathrm{~m} /(0.5 \mathrm{~m} / \mathrm{s})=2.6 \mathrm{e}-4$ seconds
$2.6 \mathrm{e}-4 \mathrm{sec}=.00026 \mathrm{sec}=260 \mu \mathrm{sec}=1 / 3750$ Very short. Can your camera do this? $5 / 3750=0.0013=0.13 \%$ of image width

