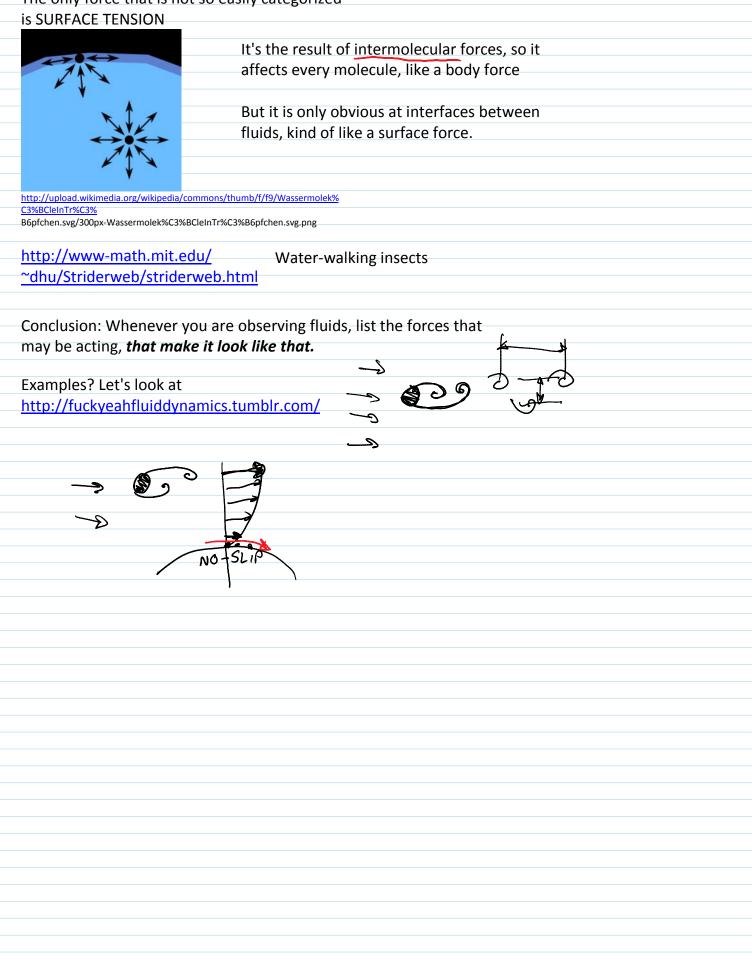
01b.Overview Tuesday, January 18, 2011	
Today:	
Admin	
Finish First Assignments	
Start Overview: Choices in imaging	
Admin:	
The undergraduate engineering section (MCEN 4151) is oversubscribed. If	
you are on the waitlist for that section, chances are not good.	
Your chances are not bad if you are on the wait list for MCEN 5151, FILM	
4200 or ARTF 5200.	
Put signed Use Agreement, Syllabus Agreement, on piles up front.	
Reminder, ITLL orientations: For after-hours access and computer login,	
attend a 1/2 hr tour. Find out what resources are here, agree to not spill	
drinks on the keyboards. M-Th 5:05 pm, in front of the ITLL office next	
door. Reservations recommended but not required.	
Lecture notes will be posted on the Flow Vis site. Feel free to nag me.	
First Assignments	
http://www.colorado.edu/MCEN/flowvis/course/initialassignments.pdf	
<u>Nttp://www.colorado.edu/wcew/nowvis/course/initialassignments.pur</u>	
•	
Overview 1: Topics will be presented iteratively.	
Previsualization: Have a goal, think about what you want it to look like.	
Make CHOICES:	
1. Flow phenomenon: Water boiling? Faucet dripping?	
2. Visualization technique: Add dye? See light distorted by air/water	
surface?	
3. Lighting (source of worst image problems)	
4. Image acquisition: Still? Video? Stereo? Time lapse? High speed?	
5. Post processing, final output. Edit, at least crop the image, consider	
contrast.	
1. Flow phenomenon: Why does it look like that?	
What are the forces? = a framework for interpretation of the image	
Minute paper. In groups (3 or so) list all the <u>forces</u> that can act on a fluid.	
Write on a scrap of paper.	
1. Elevenhanemanen: M/by deas it look like that?	
1. Flow phenomenon: Why does it look like that?	
What are the forces? = a framework for interpretation of the image	

Minute paper results:		
Viscous	A	
Shear	Air resistance	Composition of fluids
Gravitational	Cohesion	Densities of fluids
Buoyancy	Adhesion (capillary action)	Chemical reactions
Magnetic	Normal force	Impact 🦟
Inertial	Stress 🗕	Wind 🐅
Centripedal/centrifugal	Strain 🛹	Mass A Nor a force
Pressure	Thermodynamic <	Acceleration 🔶
Body forces: gravity, buoyancy, EM	Electro-magnetic	Temperature 🖌
Viscosity, shear, friction	Compressible 🔭	Phase change 🦛
Thermal diffusivity	Heat 🦇	Strong, weak nuclear forces
Interaction with other fluids	Convection	Cavitation
Surface tension	Osmosis	Vortex structures 🖕
Sullace tension	Solar radiation	vortex stretching
high		concentration gradient

High [www high

-


Marangoni forces

₩

Good, inclusive list. Not all are forces, but all can 'drive' a flow via a set of physics or mechanism. Heat, for example.

All forces can be categorized like this: 2 flavors of forces

V V			
Body	Surface		
,	Acts on the surface of a		
Acts on over meloculo equally			
Acts on every molecule equally	volume of fluid		
a) Gravity			
b) Electromagnetics			
by Electionagnetics			
http://www.youtube.com/watch?	\leftarrow		
v=fAbycqD2UmQ Protrude Flow			
Ferromagnetic fluid (ferrofluid). Iron	Pressure: always perpendicular to		
nanoparticles suspended in oil, follows	surface		
magnetic field lines.	$ {\mathcal C}$ Shear: always parallel to surface		
http://www.colorado.edu/MCEN/flowvis/g	aller		
ies/2010/Team-2/FV_popup1-16.htm	Any surface force can be		
	decomposed into a shear plus		
Expensive, but you don't need much (\$30)	· ·		
Check Ebay, Craig's list	pressure		
Check Eddy, Chaig's list	Note: these are actually STRESSES =		
	Force acting on an area.		
The only force that is not so easily categori	zed		
is SURFACE TENSION			

