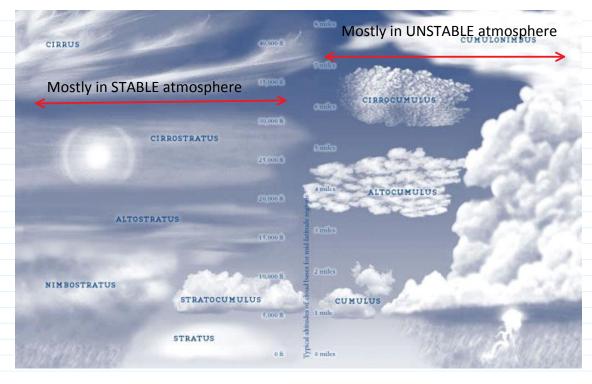
Admin:

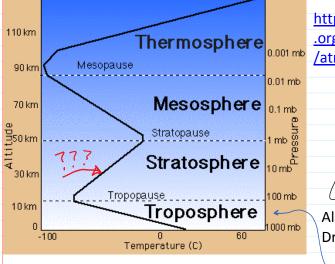
Today: Clouds, 1 of 3 lectures


CLOUDS
Learning Objectives:
1. Be able to identify cloud types
2. Describe air motion and atmospheric stability
that govern the appearance of basic cloud
types.
3. Interpret weather data with respect to likely
clouds, including Skew-T plots and wind
soundings.
Minute paper, individual: What do you already
know about cloud types? List, sketch, describe
them.
Best clouds physics book, easy read:
Gavin Pretor-Pinney, The Cloudspotter's Guide Join the Cloud Appreciation Society
(Perigee/Penguin, 2006).
Next, (for free)
Thomas Carney et al., AC 00-57 Hazardous
Mountain Winds and Their Visual Indicators
(Federal Aviation Administration, 1997),
http://rgl.faa.gov/Regulatory and Guidance Li
brary/rgAdvisoryCircular.nsf/0/780437D88CBDA
FD086256A94006FD5B8?OpenDocument.
Other cloud and atmospheric science books
available for checkout; my office.
Office hours Monday 2-3, ECME 220
TONS of online info, most is OK.
Also, CloudSpotter phone app.

Following info partially adapted from Mike Baker, local NOAA Weather Service forecaster.

comerce /

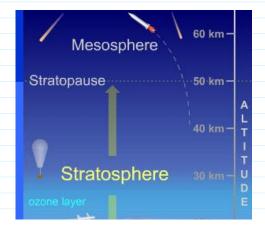
Mostly in UNSTABLE atmosphere


CIRRUS

Pretor-Pinney, Gavin. The Cloudspotter's Guide. Perigee/Penguin, 2006.

Cloud types depend primarily on atmospheric stability. Need background to understand how.

Layers of the atmosphere:



http://www.aerospaceweb .org/question/atmosphere /atmosphere/layers.gif

O3 + VVC -> O+O2 theat

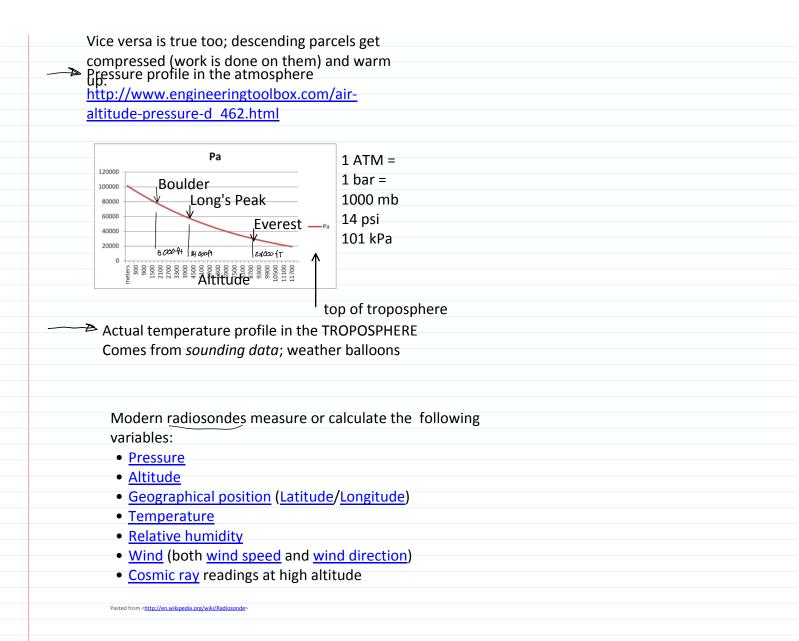
Lower 0+0, -203

All weather happens in troposphere. Driven by what happens at 500 mb level.

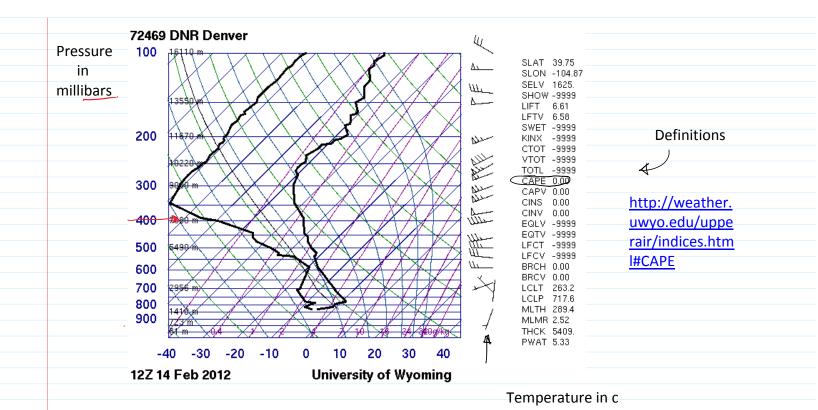
Mesosphere 60 km -	
Y.	
Stratopause	
A	
40 km - T	
Stratosphere 30 km-	
ozone layer	
Tropopause 10 km -	
Troposphere	
	http://www.windows2universe.or
	g/earth/Atmosphere/stratosphere
	.html
O ₃ absorbs sunlight, heats stratosph	iere
Warm over cold	
Less dense over more dense = STAB	LE. Hold that thought.
Back to SCALES; how big	
How big is this?	
<u> </u>	_
Do you estimate in metric or in En	glish units?
< Minute paper: In your head, 10 kr	n = X miles. = Y thousand feet.
Be approximate, 1 sig fig.	······································
http://www.wolframalpha.com/	nput/?i=10+km+in+miles
http://www.wolframalpha.com/	
Order of magnitude estimates are \	
Order of magnitude estimates are v	TENT USEFUL.

Polar	Mid-Latitudes	Tropics	
		1	
	<u>↑</u>		
		High (6000-18000m)	
	High (5000-13000 m)		
1	↑↓	Î Î ↓	
High (3000-8000m)	Middle (2000-7000m)	Middle (2000-8000m)	
Middle (2000-4000m)	Low (surface-2000m)		
Low (surface-2000m)	Low Country	Low (surface 2000 m	
	Margaret Cold		
	The second second		
colder, denser			
shorter atm.	Sea level air pr	essure = uniform w	vorldwide,
shorter atm.	•	due to weather (hig	

pressure systems) Height of atm goes with seasons too; higher in summer with hot air.

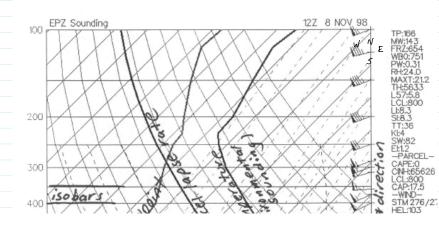

Temperature change with altitude in troposphere:

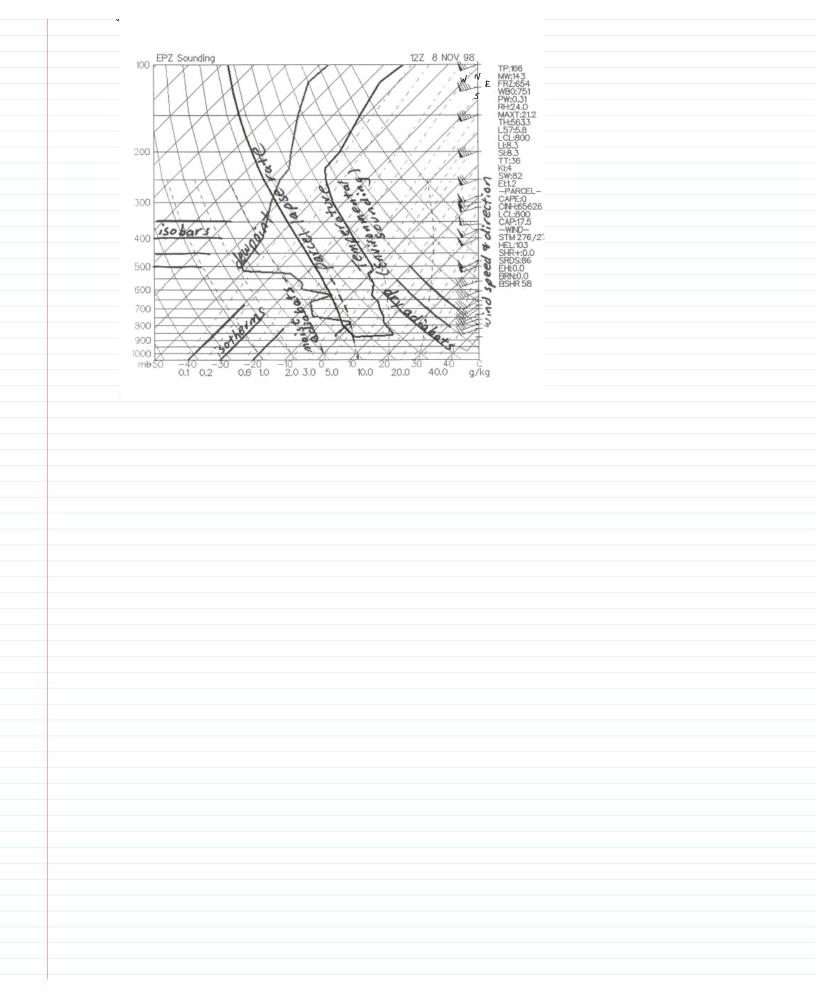
Minute paper in groups: *Why* is it colder on top of a mountain than at the foot?


Start with pressure profile in atmospheric column: highest
at surface, decreases going up.
Comes from hydrostatics; gravity balanced by pressure.

Piston/cylinder

Vice versa is true too; descending parcels get compressed (work is done on them) and warm → Pressure profile in the atmosphere


Here's what it looks like: SKEW-T http://weather.uwyo.edu/upperair/sounding.html YOU will do this for the date of your image


NO VERTICAL GRID?

So many lines! How many kinds?					
	V HIdliy Kilus!				
Horizontal blue	Constant pressure				
Angled blue	Constant temperature; isotherm. Angle SKEW T				
-					
Angle/curve green	Dry adiabat. A dry parcel will follow this temperature line if cooled				
	adiabatically				
Angle/curve blue	Moist, saturated adiabatic lapse rate				
Purple	Lines of constant mixing ratio; absolute humidity for saturation.				
Heavy black	Right line is temperature profile. Left line is dew point				
Light black	Adiabat starting at the top of the boundary layer				

Basics: <u>http://www.theweatherprediction.com/thermo/skewt/</u> Skew T Mastery: <u>https://www.meted.ucar.edu/loginForm.php?</u> urlPath=mesoprim/skewt#

A

