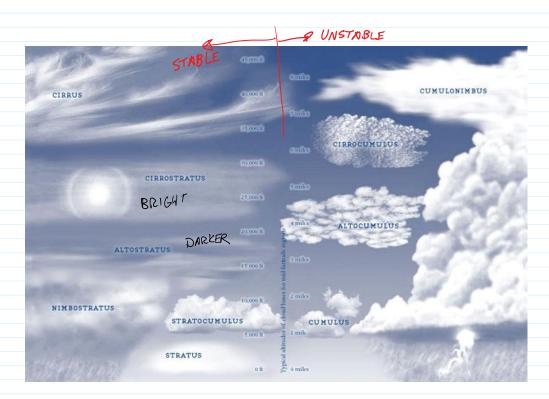

aturday, February 05, 2011 6:46 PM

Today: More Cl Skew T, stable v	ouds /s unstable, relative humidity
•	ie date moved to Oct 7, 5 pm
We will finish talkir	ng facilities Oct 5
http://www.youtube.com/watch	2v=ni\$ssHvWi30#t=1m\$9s
Ebru	
Skew-T continued	
NO VERTICAI	_ GRID?
So many lines! Ho	N many kinds?
Horizontal blue	
	Constant pressure isdbac
Angled blue	Constant temperature; isotherm. Angle / SKEW T
Angle/curve green	Dry adiabat. A dry parcel will follow this temperature line if cooled
	adiabatically
Angle/curve blue	Moist, saturated adiabatic lapse rate
Purple	Lines of constant mixing ratio; absolute humidity for saturation.
Heavy black	Right line is temperature profile. Left line is dew point
Light black	Adiabat starting at the top of the boundary layer
	.theweatherprediction.com/thermo/skewt/
Skew T Mastery: <u>ht</u>	tps://www.meted.ucar.edu/loginForm.php?

urlPath=mesoprim/skewt#

72469 DNR Denver

12Z 05 Feb 20	
	~
	() Starting parcel
	Raise it, cool it adiabatically (move up along the adiabat), perturb the system
ج	Check it, is my parcel warmer or cooler than the actual neighboring parcels? i. Cooler; more dense, wants to sink again, go back to origin STABLE
	ii. Warmer; less dense, wants to keep going up! UNSTABLE
	Can start at any point on the actual temperature line. Go parallel to the adiabats.
	Choose dry adiabat (green) if below likely cloud level or wet (blue, saturated) if in a
	cloud.
	Stable clouds = flat STRATUS type
	Unstable clouds = puffy CUMULUS family
	Atmosphere is all stable if CAPE = 0 Convective Available Potential Energy
	Has unstable layers if CAPE > 0. Thunderstorms if CAPE > 500 or so.
What was the surface wea	
http://weatherspark.com	
graphs;a=USA/CO/Boulde Awesome weather archive	er ^{e.} Dew point: Temperature a parcel would have to be cooled to
	in order to get condensation (dew)
RH	Relative humidity: for a given absolute water vapor
	concentration, RH is high for low temperatures (close to dew point) and low for high temperatures. So T and RH time plots
	point) and low for high temperatures. So I and RH time plots move opposite (Weatherspark)
Other info on Skew- condensation level.	-T: wind indicators, lifting
Skew-T download tips	: Skew-T Times: Zulu world clock, =Greenwich
	mean time GMT
	12Z, Feb 14 = ~6 am Feb 14 here 007 Feb 1 5 = ~6 n m Feb 14 here
	00Z, Feb 1 5 = ~6 p m Feb 14 here
	Where are clouds? Where temperature is close to dew point, i.e. where the
	two heavy black lines come together. Also, kink towards more steep in T line suggests clouds at that level.
	Condensation = warming (opposite of evaporation = cooling on your skin)


- 2. Choose plot, not text
- 3. Will open in next browser tab

http://weather.uwyo.edu/upperair/sounding.html

Clouds = droplets or ice MOVING UPWARDS

Lift mechanisms:

- 1. Instability
- 2. Orographics: terrain, mountains
- 3. Synoptic scale weather systems. Both at warm and cold fronts; cold air pushes under in a cold front, warm air overruns in a warm front.
- 4. Convergence: shoreline temperature differences

Clouds classified by

- A. Structure: stratus = flat layers, cumulus = clumps
- B. Base height: (2 km)
 - a. low: up to 6500 ft (above ground, not from sea level) and vertically developed (includes cumulonimbus)
 - b. middle: 6500 to 23,000 ft (2.7 km)
 - c. high: 16,000 to 45,000 OVERLAP (4.9 14 hm)
 - Cirrostratus: bright, no observable thickness, thin, uniform veil Altostratus: darker, may have noticeable thicker regions

http://cloudappreciationsociety.org/collecting/ Classification guide, one of many